How to prepare Secret NFT assets
A Ternoa Secret NFT is a unique type of NFT that incorporates encrypted data, making it more secure and exclusive than a Basic NFT. Only the current owner of the Secret NFT has access to the encrypted data at any given time.
There are two ways to create a Secret NFT: either by adding a secret to an existing Basic NFT or by creating a new Secret NFT from scratch. In both cases, you will need to prepare the Basic NFT assets beforehand.
A Ternoa Secret NFT comprises two additional files: a secret asset file (such as an image, video, or music file) and a metadata JSON file for the secret. To ensure maximum security and exclusivity, the secret asset file must be encrypted, and the encrypted file is nested within the metadata file. Both files are stored on IPFS (Interplanetary File Systems) with unique hashes dedicated to each file.
IPFS (Interplanetary File Systems) is one of the solutions we recommend to upload NFTs media and other associated metadata. Thus off-chain data are stored in a fully decentralized way and only the link to this metadata is stored on-chain as part of the NFT. This link is frequently a fingerprint called a cryptographic ID (e.g. Qmf5RHhnUjSCfCN9d1Ee6sUWxe3Eqvogw1cTsssrxAxtPn
). IPFS files are accessible using those hashes.
Ternoa provides its own IPFS public nodes on different HTTP gateways based on the network environment:
- MAINNET: ipfs-mainnet.trnnfr.com
- ALPHANET: ipfs-dev.trnnfr.com
Please note that an api-key is needed to store data on those gateways. Visit IPFS Keymanager to obtain your API Key. After being generated, the key may need a few minutes to become effective for use with the Ternoa client. Learn about the Ternoa IPFS client here.
Off-Chain Metadata
An NFT is a unique ID. On-chain data contains this ID coupled with additional important information like ownership, royalties, and more. However, media and metadata are stored off-chain for performance and flexibility. These data must be carefully written to guarantee compatibility across the tools and dApps of the ecosystem. Ternoa Improvement Proposals (TIPs) propose structures adopted from ERC-1155 to ensure this compatibility.
Here below is the expected format for secret NFT:
Secret NFT
{
"title": "(OPTIONAL) Title of the Secret NFT",
"description": "(OPTIONAL) Description of the Secret NFT",
"properties": {
"encrypted_media": {
"hash": "CID Hash of the encrypted media",
"type": "Type of the encrypted media (file format)",
"size": "Size of the encrypted media",
"name": "(OPTIONAL) Name of the encrypted media",
"description": "(OPTIONAL) Description of the encrypted media"
},
"public_key_of_nft": "Public key associated with the Secret NFT"
}
}
Ternoa IPFS Client
Prerequisites:
- NodeJS v.14+ & NPM
- Install and set up your editor of choice (for example Visual Studio Code [VSC])
- Install Ternoa-JS
An IPFS client is available on Ternoa-JS SDK to make IPFS upload simple with only one line of code.
Place any asset you want to use at the root of your project and use the following code snippet by completing FILE_NAME & FILE_TYPE. A PUBLIC_PGP_KEY is also required to encrypt the secret asset before uploading it to IPFS.
import fs from "fs";
import { encryptFile, TernoaIPFS, File } from "ternoa-js";
const main = async () => {
const file = new File(
[await fs.promises.readFile("FILE_NAME")],
"FILE_NAME",
{
type: "FILE_TYPE",
}
);
const encryptedFile = await encryptFile(file, "PUBLIC_PGP_KEY");
const ipfsClient = new TernoaIPFS(new URL("IPFS_NODE_URL"), "IPFS_API_KEY");
const secretNftMetadata = {
title: "(OPTIONAL) Something strong.",
description: "(OPTIONAL) This is my first Secret NFT on Ternoa.",
};
const secretMediaMetadata = {
name: "(OPTIONAL) FILE_NAME",
};
const { Hash } = await ipfsClient.storeSecretNFT(
encryptedFile,
file.type,
"PUBLIC_PGP_KEY",
secretNftMetadata,
secretMediaMetadata
);
console.log("The off-chain metadata CID hash is ", Hash);
};
First, the asset file is read from the file system and wrapped in a specific File
instance imported from the Ternoa-JS library. The encryptFile
function is used to encrypt the file contents using a specified public PGP key. The TernoaIPFS
class is then used to create an IPFS client that connects to a specified IPFS node using a given API key. The metadata for the file and the media are then defined in an object and passed to the storeSecretNFT
method of the client along with the encrypted file, the file type, and the public PGP key. The resulting Hash
of the off-chain metadata is logged to the console.
The storeSecretNFT
method handles two IPFS uploads under the hood: a first one with the NFT media (e.g. the image) and a second one with the JSON metadata file, including the media's hash from the first upload response. This method also validates the metadata structure to ensure TIPs compatibility.
Ternoa-JS provides a convenient helper function named secretNftEncryptAndUploadFile
that combines the file encryption and storage of a Secret NFT on IPFS.
You can generate a PGP key pair using the generatePGPKeys
helper from Ternoa-JS.
Next
The next step will be the on-chain minting using Hash
previously generated. Keep it and continue on the "How to mint a Secret NFT on-chain" guide.
Support
If you face any trouble, feel free to reach out to our community engineers in our Discord.